物理屋にもっとも身近なリー群は角運動量の議論に現れるSU(2)群であろう。これは空間回転と関連付けられているため理解がやさしい。この本の重要なスタンスの一つはより複雑なSU(3)などを、よくわかっているSU(2)によって説明するというものである。この方法は複雑な群に対する強固なイメージを植えつけてくれる。
Georgiの説明は実に明快で学部4年程度でも十分読める内容になっている。なによりも物理への応用が非常に早い段階で登場するのがすばらしい。Georgiの語り口は非常に教育的で、内容の構成にもすばらしいものを感じる。
なお吉岡書店から日本語訳が出ているが、これは第一版の和訳で有限群などメモ程度にしか書かれていない。第二版は有限群も含め多くの章が大きく改訂され、ほぼ別の本のようになっているので英語で読むことを強くお薦めする。数学的に不足する部分もあるが、それこそ日本語の本で補えばよい。この本はそれを補って余りある。
一昔前に群論ペストなるものが流行したと聞くが、本書は群論の教科書でありながら、「対称性の原理はそれ自身が最終のものであるべきではない。…群論は役に立つ技術である、がそれは物理の代替的にはなり得ないのである。」と警鐘を鳴らしている。そう言う意味では現代における群論ペストの予!防接種としての役割も持つのではないか。